

A Cost-Effective Low-Emission Hydrogen-Powered Hybrid-Electric Vehicle.

Corporate Overview

Over 45 Years of Gaseous Fuel Experience in Storage, Metering, & Electronic Controls:

- Transportation: Commercial & Military
- Power Generation
- Hydrogen Refueling Infrastructure

Largest Tier I Second Stage Manufacturer for GM

- Supplier of the Year in 1999
- Second Stage Manufacturing
- Powertrain Engineering
- Systems Integration
- Concept & Specialty Vehicles Development

Commercialization Partnerships

- GM: Worldwide
- Sumitomo: Japan
- IMPCO: Europe
- AM General: North America

700 Employees, 17 Facilities

Plant Locations Tecstar Whitby, ONT Tarxien Vaughn, ONT **Troy Tooling Rochester Hills, MI** Quantum Detroit Office Troy, MI Wheel to Wheel Corporate Powertrain Integration Headquarters Troy, MI Quantum Advanced **Technology Center** Classic Design Irvine, CA Concepts Walled Lake, MI Quantum Advanced **Tecstar Pgm Mgmt Vehicles Center Madison Heights, MI** Lake Forest, CA **Tecstar Distribution Tecstar** Livonia, MI Haslet, TX **Tecstar Finance Tecstar** Goshen, IN Shreveport, LA **Amstar** Fort Wayne, IN

A NEW COMPANY WITH A HISTORY

- ◆ 400,000 Specialty Vehicles
- ◆ 18,000 Natural Gas Vehicles
- ◆ 600 Hydrogen Fuel Systems

Program Justification

- Hydrogen-fueled internal combustion engine (ICE) vehicles show promise as a bridge technology between conventional vehicles to fuel cell vehicles and have the potential to significantly reduce VOC, NO_x, CO and air toxic emissions as well as green house gas emissions.
- Hydrogen-fueled ICE vehicles would utilize the developing hydrogen infrastructure and help expedite the expansion of hydrogen infrastructure coast to coast.

Why the Prius?

- Acquired Knowledge & Experience in a Previous Prius Program
- Prius Advantages
 - Hybrid Electric Powertrain
 - Electric Motor Acceleration Assist
 - Engine Shutdown at Idle
 - Regenerative Braking
 - Electric-Only Operating Mode
 - Battery Charging Controls
 - Efficient Power Plant
 - CVT Transmission
 - Engine & Control Functions
 - » Camshaft Position Control
 - » Electronic Throttle Position Control
- Technology Hurdles
 - Hydrogen Storage Capacity
 - Requires High Fuel Efficiency for Range
 - SULEV Emissions
 - Requires High Fuel Efficiency for Meeting Standard

H₂Hybrid Characteristics

- Energy efficient drivetrain
- SULEV emissions with
 - VOCs, CO and CO₂ virtually eliminated
- Bridge technology to fuel cell vehicles
- Demand for hydrogen and infrastructure

H₂Hybrid Characteristics Continued

- Performance comparable to gasoline version with increased fuel economy
- The H₂Hybrid includes:
 - Electronic multi-point hydrogen injection system using Quantum's hydrogen injector and engine controller
 - Turbocharger and inter-cooler for increased performance and efficiency
 - Quantum Compact light weight compressed hydrogen fuel storage module
 - Hydrogen fuel delivery system comprising of stainless steel tubing produced with our CNC fuel line equipment
 - FMVSS crashworthiness tested

H₂Hybrid Specifications

Fuel Capacity	driver and drive cycle 1.6 kg at 5,000 psig / compressed 2.4 kg at 5,000 psig (extended
Fuel Consumption Rating	56-58 M/kg (FTP city test), real world 40 to 60 M/kg subject to
Torque	82 lb-ft at 4,000 rpm
Horsepower	70 HP at 4,500 rpm

Vehicle Alterations Performed

Three-Dimensional scans were completed of the underbody to generate mathematical models, to facilitate the design and the integration of the hydrogen storage system

CAD Illustration of Hydrogen Storage System

Actual Hydrogen Storage System Layout

H₂Hybrid Engine Modifications

Base engine modifications include the addition of hydrogen fuel injection and associated controls, a turbocharger and an intercooler.

Results Barrier Testing

- No Current Federal Requirements Exist for Hydrogen Fueled Vehicles;
- Followed FMVSS 303 Guidelines for Compressed Natural Gas including Front, Rear Moving and Side Move barrier hits planned
- Status All Impacts Completed Successfully

Results Engine Verification Testing

- Engine Durability
 - 200 hour accumulation target
 - Status Hours completed

Results Vehicle Testing

- Completed more than 15,000 miles mid August 2005
- Continuing Mileage Accumulation to Monitor Vehicle Performance and Experience Issues Prior to their Occurrence in Customer Vehicles

Status - Prius Build Program

- Seven Vehicles for Development and Validation Activities
 - Two for Engineering / Mockups
 - One for Mileage Accumulation and Durability Testing
 - Four for Barrier Crash Testing
- Thirty Nine Deliverables
 - Cities 25 with compressed systems (5 per city)
 - AQMD 5 with hydride systems
 - D.O.D. 6 with compressed systems (*pending)
 - E-Vermont 1 with compressed system
 - NYSERDA 2 with compressed systems

Additional Program Details

 Next deliveries to customers planned for the first quarter of 2006.

